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Abstract data is visualized. One can calculate the vector magnitude

. . and use scalar visualization techniques but directional in-
Vie describe a softwarsystem, OPO, that numerically formation is lost. Interactive control of initial positions for

analyzes and graphically displays topological aspects of .
three dimensional vector field, to produce a single,ala- integral curves (particle traces) [2] and surfaces [3] may be

tively simple pictug that characterizeg The topology of used to explore, but choosing appropriate initial positions

. ; . - X is hardly straightforward.
that we consider consists of its critical points (veher A simple picture completely characterizinis the ideal
v = 0), their invariant manifolds, and the integral curves piep pletely & ’

connecting these invariant manifolds. Many of the eger Studying such a picture should give one a clear and com-

ing featues ofv are associated with its critical points. The plete understanding of the important characteristics. of

field in the neighbdrood of each critical point is apgxi- \(ecto_r fle.|d topology visualization can go a long way in this
. S PPXI- | direction; our software takes one small step.
mated by thedylor expansion. The coefficients of the first , X
. o Informally, vector field topology consists of the key
non-zeo term of the dylor expansion aund a critical : .
. i " . I points, curves and surfaces that, taken togetheracterize
point are the 3x3 matrixJv. Critical points ae classified . . . . . .
- o . all integral manifolds irv. Integral manifolds include parti-
by examiningdv’s eigenvalues. The eigenvectorslof ) .
. . ) . . ) cle traces, streamlines, integral curves, stream surfaces and
span the invariant manifolds of the linearized fieldwrd a . . : . i .
. . ) L . integral surfaces. h certain exceptions, all integral mani-
critical point. Curves integrated dm initial points on the

. . " . folds must begin and end at zeros/ir or at field bound-
eigenvectors a small distanceffin a critical point connect . . .

. » X aries. The zeros iv form points, curves, surfaces and
with other critical points (or the boundary) to complete the

. " . volumes -- critical manifolds. Thus, if one finds the critical
topology In addition, one class of critical surfaces impor- . . o )
: . ) . manifolds inv and can characterizein the neighborhood
tant in computational fluid dynamics is analyzed.

o . ) of these manifolds, one can generate almost any integral
TOPO is implemented as a module in tA&STF [1] visu-

e i i | ) manifold inv by choosing initial conditions according to
alization envionment. RST is general purpose visualiza- {he characterization.

tion softwae with modules for isosurface generation,

particle tracing, etc. DPO operates on curvilineastruc-  pPrevious Wbrk

tured grids, including lage multi-zone grids. #vhave used

TOPO to visualize a number of computational fluid dynam  The connections between feifential equations and the
ics (CFD) data sets. Thesults agee well with other topol- topology of vector fields were initially developed by
ogy softwae and hand generated topologieOAO has Poincare, who laid down the foundations of the qualitative
proved useful in finding surface topolodipw attachment theory of diferential equations in 1875 [4]. Andronov es-
and separation points, vortex &, scalar field local ex- sentially completed the theory in two dimensions during the
trema, and generally intesting egions ofv. We believe middle of the twentieth century [5,6]. The theory in three
there may be other intesting applications yet to be discov- dimensions is still not complete [7]. More contemporary tu-
ered. This paperlong with the&felences, contains most of torial references which discussfdiential equations, vec-
the information needed for a scientifiogrammer to code tor spaces and dynamical systems include [8,9,10]. Since

a topology module in another ersrment. the introduction of computers, a plethora of complex phe-
_ nomena that require at least three dimensions to exist (e.g.,
Intr oduction chaotic flows and strange attractors) have become much

] ) ) o ) ) more widely known. Many of them were, howguatown
Three dimensional vector fields arefidifilt to visualize. to Poincare. For a historical survege [1].

One simple technique chooses a set of points in the fie g of the first applications of the qualitative theory of
and draws arrows indicating the magnitude and direction (yjfarential equations to three dimensional fluid flows was
v at each point. Unfortunatelthis usually results in a dis- by Lighthill [12]. Perry and Fairlie [13] extended the ap-

play that is either cluttered or limited to a small subset 0,-55ch o a more general class of flows. This initial work
the data. If the points are chosen from some simple shaj,5s peen enhanced by that of many others, notably
like a plane, the ends of the vectors can be connected [14,15,16,17].

form a deformation surface -- but again only a subset ¢

Automatic computation of fluid flow topology from ex-
1. Work supported under NA2-12961.



perimentally generated data has been investigated [18]. TiwhereJ is the Jacobian matrix of the coordinate transfor-

topology of numerically simulated flowfields has been in-mation. J and J* are used to convert between physical

vestigated using automatic techniques by Shirayama arspace and computational space.

Kuwahara [19] and by Helman and Hesselink Critical points exist where the componentsvodll si-

[20,21,22,23]. multaneously vanish. They are identically located in both
Helman and Hesselink have reported on two dimensiorphysical and computational space since zero length vectors

al topology software using a critical point classificationremain invariant under nonsingular local linear transforma-

scheme similar to ours. A third dimension is used to repretions such ad andJ.

sent time for unsteady 2D flows. They create surfaces cOThe Matrix Ov: The Taylor series expansion sfabout a

necting the important integral curves afefiént time steps.  point X0 s:

They also find attachment and separation surfaces in thr

dimensional flows. Their two dimensional results on the (0) (0) aVi

hemisphere cylinder surface flow topology agree very wel V; = V; ~ + (Xj - Xj )W +0 (AXKAX|) (4)

with ours. Recentlytheir work has been extended to find ]

3D critical points [22]. we assume suficiently smooth and diérentiable for the
) Taylor expansion to exist. Subscripts indicate components.
Analysis At a critical point, the first term of the expansion vanishes

, (by definition). Considering only the second term, each
TOPO analyzes data generated by computational fluigqyation has three terms, one for each coordinate direction.
dynamics (CFD) codes. These data are expressed on CUl'Tne coeficients of these equations are the 3x3 matii.
linear, structured grids in PLOT3D format [26]rilinear

interpolation is used to find field values between gric

|

points. The curvilinear coordinate system is often referre (Ov) ] = X )
to as “computational space” in this pap€he curvilinear j
coordinates of a point a& = (&, n,¢) while its physi- Around a critical point, the eigenvalues and eigenvectors
cal coordinates are x (x,y,z). The two coordinate systems of this matrix determine the local behavier Positive
are related by the transformation: eigenvalues indicate thais directed away from the critical

— — oint (a repelling eigendirection) and negative values the

g =& (x) x = % (&) 1) point (a repelling eig ) g

opposite (an attracting eigendirection). A complex conju-
This coordinate system is usually implemented as a thregant pair of eigenvalues indicate tiwapirals in or out, de-
dimensional array of (x,¥) positions. The i,j,k indexes into pending on the sign of the real part of the eigenvalues. Thus
this array are equivalent to the integer part of thethe linear approximation of near a critical point is charac-
(§,n,0) coordinates. \& use computational space for terized by the eigenvalues and eigenvectorsiuf The
calculations since they simplify many operations; e.g., difeigenvalues of may be used to classify the type of a criti-

ferencing. cal point and the eigenvectors may be used to find its in-
v = (U, Vv, w) is defined as: variant manifolds.
As shown in reference [37] the matfikv is related by a
_ dXi (2 similarity transformation to its computational space equiva-
Vi = dt lent Ov. Thus the eigenvalues of both matrixes are the

where, in this case, (xz) are the lagrangian coordinates of Same, and _eigenvectors are related by the same similarity
an element “moving” with the vector field and t is time in transformation.

velocity fields and an arbitrary parameter in oth-Critical Point Classification: Critical points may be classi-
ersV (X, Y, Z) may be converted to computational spacefied as nodes, foci (2D only), or saddles on the basis of the
Vv (&, N, {) using the chain rule. Considering only the eigenvalues oftlv [11]. Nodes and foci may be further

first component: classified as attracting or repelling (See Figures 1 and 2).
Positive eigenvalues indicate a repelling node, negative val-

~ d§ _ 0&dx A 0&dy  0&dz ues an attracting node.
u(g,n.¢) = dt = oxdt  dydt + dzdt Two dimensional saddles have one positive and one neg-

ative eigenvalue. Near a saddleapproaches the critical

or using matrix vector notation to include all components, point along negative eigendirections and recedes along pos-

X itive eigendirections. In three dimensions, two eigendirec-
v =J1 , Ji = _! 3) tions have the same sign and span a plane. The third
J GEi eigendirection spans a line. Thusapproaches (for exam-

ple) a 3D saddle along a plane and recedes (in this example)



from the saddle along a line. positive eigenvalues respectively). Arrowheads may be

Foci only appear in two dimensions. Around facgpi- added to the lines to further clarify their direction. Lines
rals towards or away from the focus. The eigenvalues arerepresenting vectors with complex eigenvalues are connect-
complex conjugant pair with a positive real part indicating éed to form a rectangle in the invariant (spiraling) plane.
repellor and a negative real part indicating an attra€tee  Line length may be scaled by the eigenvauegal part.
magnitude of the imaginary part indicates the strength cOne may request quantitative information on selected criti-
the spiraling motion. In three dimensions, the plane of ical points, such as their location, eigenvalues, eigenvectors
saddle may be a two dimensional focus. Such a 3D sadcand the components afv. Most visualization parameters
will have one real and two complex eigenvalues. are user controlled. See the reference [37] for defaults.

The following diagrams of critical point types are after Node Glvoh —
Abraham [1]. ode Glyph Saddle Glyph Spiral-Saddle Glyph

Type Portrait Eigenvalues
Attracting \ )/
Node /\ - r Figure 3: Critical point glyphs.
i Integral curves are visualized by a set of connected line
\ / segments. Separate color controls for outgoing and incom-
Saddle '\ r ing integral curves are provided. Optionaljrrowheads
/ showing the direction of along an integral curve may be
added. These arrowheads may be animated to appear to
Repelling rgl ' flow along the curves.
Focus ° r
( . Implementation
Figure 1: Classification of two dimensional critical poi TOPO is implemented as a module in tASKF CFD vi-
sualization environment [2]. The software transfomn®
computational space, locates candidate grid cells that may
Type Portrait Eigenvalues cpntain critical poi_n_ts, finds cri_ti.cal poi_nts W_ithin thege can-
i didate ceIIs,_ classifies each critical point using tr_]e el_genval—
ues of Ov, integrates curves along the eigendirections of
Node ‘TIL’ S D Ov, and displays critical points and integral curves com-
bined with other RST generated visual elements. Most pa-
i rameters of topology generation are under user contel. W
; have chosen defaults for these parameters that work well
Saddle with the CFD data sets we have examined. These defaults
may be found in reference [37].
[ Transformation of v to Computational Space:The vector
Spiral ‘@ . r field is converted to computational space. This transforma-
Saddle . tion is accomplished by dérencingx with respect tc, to

generate] at each grid node, invertinj and transforming
Figure 2: Classification of three dimensional critical pc v using the resulting matrix. All of the following calcula-
tions are accomplished in computational space.

Visualization Finding Candidate Grid Cells: A critical point can only
occur in a cell where the values of all three components of
Our software draws the topology wfas a set of critical pass through zero (see Figure 4). For monotonic interpola-
points and associated integral curves. The user selecion schemes (e.qg. trilinear interpolation), this may be deter-
which critical points are to be displayed based on theimined by a simple heuristic. For each component we
types. Integral curves are chosen by selecting the eigenexamine the value at each cell vertex. If both negative and
rections to integrate along for each type of critical point.  positive values exist, that component must change sign (and
Critical points are visualized using glyphs consisting othence pass through zero) somewhere within the cell. This is
three lines crossing at the location of the critical point (sea necessarbut not suicient condition for a critical point
Figure 3). The lines are colored to distinguish the attractinto exist within the cell. It is not sfifient because the sur-
and repelling eigenvectors (associated with negative arfaces within a cell where the component-wise zero cross-



Figure 6: Critical point glyphs. Figure 7: Integral curves started near critical points.

ings exist might not intersect. Critical point locations are shown in figure 5.

Finding Critical Points within Candidate Cells: The Classifying Critical Points: Once a critical point is locat-
problem of finding critical point positions inside candidateed, it must be classified by examininy. Ovis calculated
cells is equivalent to solving a system of simultaneous norusing finite diferences to find the gradient at the seller-
linear equations. tices. v at the critical point is then found by trilinear in-

The candidate cell is recursively bisected and each of titerpolation. This is algebraically equivalent to interpolating
resulting eight sub-cells subjected to the candidate test. Istencil values in neighboring cells and therfetléincing.
after a fixed number of bisections a subcell passes the czThe eigenvalues dflv are found (using standard methods)
didate test, the location is more precisely estimated usirand the critical point is classified based on their locations in
Newton’s method. The final point is allowed to lie within a the complex plane (see Figure 1, 2, 3, and 6).
small distance outside of the subcell. The cogeece cri-  |ntegrating Curves: Integral curves may be computed
teria for the Newton iterations is determined by multiplyingfrom initial positions very close to critical points along the
the average magnitude of the ceNectors by a small fac- eigendirections oflv (see Figure 7). These curves are inte-
tor. This can sometimes cause the criteria to be too small, \grated forward or backward depending on the sign of the
there is also an absolute lower bound on the criteria. eigenvalue.

The user may choose to use only the bisection metho when an integral curve crosses a computational space
In this case a critical point is assumed to lie at the center poundarythe rest of computational space must be checked
any subcell passing the candidate test after the last bisectito see if the curve re-enters. For example, the grid may be
has been accomplished. periodic, or may overlap another grid in a multiple-zone

+



dataset. The check is accomplished by an octree search [za single class and no further analysis is attempted.

using bounding boxes to prune the search tree followed bycritical Curves, Surfaces and \blumes: With the notable
tetrahedral containment test [25]. A bisection method is afexception of no-slip boundaries in CFD velocity fields,
plied to remaining potential grid cell locations before finaltopo makes a minimal feft to detect, analyze, and dis-
rejection or acceptance of a new computational space popjay curves, surfaces or volumes whereanishes. No at-
tion for continuing the integration. The computationaliempt is made to find critical curves or surfaces unless they
space coordinate of grid re-entry is set to the center of tffa)| on grid cell boundaries. If two adjacent grid points have
enclosing subcell. zero length vectors, we assume a critical line between them.
Displaying Topology: Critical point and integral curve lo- For the most part, PO simply draws a line between such
cations are converted from computational space to physicpoints. Critical surfaces on cell boundaries can be detected
space for display purposes. The mapping is accomplisheby examining these lines. Critical volumes can be similarly
using trilinear interpolation of the physical space coordi-found. The cells containing such critical lines are not con-

nates at the vertices of grid cells. sidered candidates and are not searched for critical points.
) If a critical curve or surface exists within a grid cell, then
Numerical Methods multiple critical points may be foundOPO limits the total

) ) number of critical points found in a single grid cell to about
Care must be taken when evaluating the eigensystems gt A warning message is printed if this limit is exceed-
matrices that are defective or nearly so [28]. Numerical arrgq

biguities that arise when at or near a multiple root are har
dled in an ad-hoc manndResults of subtraction are set to
zero if the absolute value of the result is less than a sme
fraction of the absolute value of any operand.

In most places where the software tests a value for ze
there is a relative fuzz factovalues with an absolute value
less than the relative fuzz factor are assumed to equal ze
Default fuzz factors may be found in reference [37].

Integration is performed in computational space using .
fourth order Runga-Kutta method with adaptive step sizi
error control [29]. V& found this to be necessary since the
magnitude and direction of the vector field can vary dramai
ically near critical points. The initial step size, maximum
number of steps, maximum stepsize, minimum and max
mum step length, and the adaptation criteria in each dimel
sion parameterize the integration.

Differencing is accomplished using a three point stenc
where possible. Where one of the values is unavailable di
grid boundaries or invalid grid points, a two point, one sid-
ed diference is used.

No-slip Boundaries: In many CFD computations, no-slip
boundary conditions are imposed on the velocity field. On
these boundaries, is zero. Our software analyzes this im-
portant class of degenerate critical surface by examining the
skin friction field. This is the two dimensional field formed
by taking the limit ofv at the no-slip surface. This is ap-
proximated by the value aof one grid line away from the
surface. The critical points in the skin friction field are
found and analyzed as follows: Sinty = O at critical
points in this field, the second derivative term in thgldr
expansion of/ is examined. This third rank tensor is identi-
cally zero in the two dimensions corresponding to the local
on-surface coordinates. Thus, its non-trivial terms can be
expressed as a 3x3 matrix, and the same eigenvalue analy-
sis may be applied. This will be elaborated upon in a future
paper

To allow for comparison with topologies derived from
wind tunnel oil flow experiments, integral curves starting
along eigenvectors that lie on a no-slip surface are integrat-

Cell bisection is accomplished by interpolating the vaI-.ed in the skin friction field (i:e., the limit efas the sprface
ues at the midpoint of each cell edge, face, and at the oS approached) and constrained to stay on a no-slip surface.

center forming eight sub-cells. This procedure is per-Grid Singularities: Special case code has been included to

formed recursively handle common coordinate system singularities. A problem
occurs in candidate grid cell selection when a grid cell edge
Special Cases is collapsed; i.e., if two or more adjacent grid points have

identical locations in physical space. If the candidate test is
Degenerate Critical Points:The discussion thus far has applied using the computational space vectors, false posi-
focused on “generic” or “hyperbolic” critical points. Excep- tives can result. Subsequentiycritical point that does not
tional cases can arise in several situations. Non-hyperbolreally exist may be found. This problem can be circumvent-
critical points occur when the real part of any eigenvalue ied by detecting the case where two grid points are identical-
equal to zero. Other exceptional cases occur when defectily |ocated in physical space and arbitrarily choosing one of

matrices are encountered and hence eigenvectors coincithe computation space vectors to be the vector at both grid
These degenerate cases, though unstable, do occur in flopgints. The candidate test will then work properly

with imposed constraints such as symmetry or incompres:
ibility. Currently all degenerate critical points are placed in



Results several critical points. One may therefore use critical point
locations as a guide for the interactive specification of ini-
We have used@PO and otherAST modules to inves-  tja| positions for particle traces and stream surfaces. For ex-
tigate the properties of many CFD solutions.These soltample, a cluster of critical points is found near the lee
tions include flow about a blunt fin [30], a NASA spacesurface of the hemisphere cylind€hese critical points are
shuttle orbiter [31], a shuttle engine liquid oxygen posiclosely associated with the separation bubble (see Plate 3).
[32], a shuttle launch configuration [33], a hemisphere cyl\yere a Flow Solution is InadequateThe existence of

inder [34], and others._ - . . pure attractors or pure repellors in a steady or incompress-
By_ carefully_choosmg the critical points to display _‘?ndible flow solution may well indicate some problem, such as
the _elge_nd|rect|ons to_mtegrat_e, one may creat_e specific Van incompletely convged solution. Such a situation can-
sualizations. Useful wsuahzaﬂpns include v_eh|c|e s_urfacenot exist in a physically realistic flowfield since it violates
to_pology vortex cores, scalar field exirema, interesting '€ conservation of mass expressed by the continuity equation
gions ofv, and places where CFD flow solvers have 0.y = O Similarly, the existence of saddle-node pairs
performed well. that disappear under a small perturbation may indicate
Surface Flow Topology: By integrating curves in the two “wiggles” in the topologyakin to the nonphysical wiggles

dimensional skin friction field along the eigendirections offound around shocks when inadequate fedicing
saddles, one may visualize surface flow topology [12,21]schemes are employed.

These curves connect skin friction field critical points anc
allow the user to deduce the rest of the surface skin frictio
field's dynamics qualitativel\since integral curves may not
intersect, except at critical points. Furthermore, by examin
ing the of-surface eigenvectors, one may determine if the
flow is attaching or separating.

TOPO has been partially validated by comparing surfac
flow topology results on a hemisphere cylinder with HeI-Summary
man’s [21] computed results and hand generated results
[34]. Note the close correspondence between Hebnar’ Vector fields may be visualized using the ne@PD
sults (Plate 1a) and ours (Plate 1b). In reference [21] Hemodule in RST. A single, relatively simple picture cap-
man’ results are shown to compare well withg's hand  tures many key features afWe have used this software to
generated results [34]. visualize CFD solutions.dlour knowledge, the software is

Vortex Cores: By one definition, a vortex core is the inte- unique in displaying dfsurface eigenvectors of skin fric-
gral curve within a vortex that has minimum curvature [35]tion critical points, integrating vortex cores from spiral-sad-
If there is a critical point on a vortex core, then that poindles, and in the combination of topology visualization with
must be a spiral-saddle [36]. The eigenvector belonging t& general purpose visualization systeigF). e believe
the only real eigenvalue of the spiral-saddle correspondthat topology visualization may be useful well beyond the
locally, to an integral curve entering or leaving the criticalgrounds we have explored.

point. This particular curve does not spiral at all and is

therefore on the vortex core. By continuing to integrate thiACKnowledgments

curve, the entire vortex core may be visualized.

A shuttle main engine liquid oxygen post data set is use
to illustrate TOPOS% vortex core capability (see Plate 2a).
The core Iogatlon c_Ioser c_orresponds to the vortex COr€R aferences
found using interactive particle tracers (see Plate 2b).

Scalar Field Extrema: After taking the gradient derivative [1] G. Bancroft, F“Merritt, T. Plessel, PKelaita, R. Mc-
of a scalar field one may visualize the topology of the reCabe, A. Globus, “AST: A Multi-Processing Environment

sulting vector field. The nodes of this field will be at scalallcor Visualization of CFD,"Proc.Vsualization '90 IEEE

. - ) .~ Computer SociefySan Francisco (1990).
field local minima and maxima. Other aspects of grad|er[2] CPLevit and gSBryson “p Wtu(al En\)/ironment for Ex-

derivative fields should shed |Ight on the structure of th(p|0ration of Three Dimensional Flowfields,” SPIE paper
corresponding scalar fields as welle\Wave not yet ana- 1457-19SPIE Conf on Stepscopic Displays and Applica-
lyzed these. tions Il. San Jose (1991).

: . . . . [3] J.RM. Hultquist, “Interactive Numerical Flow iSual-
Inter esting Regions of vinteresting regions of tend to ization Using Stream SurfaceComputing Systems in En-
contain critical points. For example, flow reversal (recircu-gineeringl (2-4) pp. 349-353.

lation) frequently involves the simultaneous existence 0[4] H. Poincare, Sur les courbes defines par une equation

Large Data Sets:Since the topology of must only be cal-
culated once, topological visualization is an excellent tech-
nigue for examining lge data sets where slow response
renders interactive techniques fiieetive. Plate 4 are the
vortex cores of a shuttle launch configuration. This is a
900,000 node, nine grid data set.

We thank PBuning for numerous informative discussions
regarding this work.
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